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[. INTRODUCTION

In this paper, we examine the behavior of one-dimensional shock waves propagating in
elastic dielectrics. We account for the presence of thermodynamic effects but ignore the
possibility of heat conduction. After deriving the differential equation which the amplitude
of a shock must obey, we examine the properties of shock transition. In particular, we find
that the classical results of shock transition can be generalized to the present situation; and
these results, in turn, allow us to deduce the implications of the shock amplitude equation
on the behavior of the shock. It is found that the criteria of whether the shock grows or
decays depends on the relative magnitudes of the jump in strain gradient and 4., called the
critical jump in strain gradient. This, of course, is expected. We also examine the properties
of the temperature and electric field during shock transition and derive particular results
which are valid when the shock amplitude is infinitesimal.

2. BASIC EQUATIONS AND CONSTITUTIVE ASSUMPTIONS

In this paper we consider the one-dimensional motion of an elastic dielectric body %
neglecting the effects of heat conduction. The motion is described by a scalar-valued
function y which gives the location x = (X, ?) at time t of the material point X. As is
customary, we identify the material point X with its position in a fixed homogeneous con-
figuration # with mass density p,. For such a material the specific internal energy e, the
stress T, the material electrical displacement &, and the absolute temperature 8 are deter-
mined by the strain ¢, the material electrical field &, and the specific entropy #:

e =6é(, &, 1),

T=T(, &, n), )
D =9, &, 1), @D
8=0c &1
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with
o, &,
T(e. &, = po ~(—6_YQ’
£
A ol e, &,
D, 8,n) = —pg _(.5__'7), (2.2)
&
oe, 6. gy = L& &)
on
In 2.2}
& &9, &,
[ =0 &) = s.m) + 25 - E2E 40 2.3)
2po Po
with g, being the electrical permitivity of free space. The strain ¢ is defined by
ou(X, 1)
X, t)y= }
o, = — (2.9)

where u(X, t) = y(X, t) — X is the displacement at time ¢ of the material point X. We assume
that the electromagnetic conditions in the material are quasi-static and that magnetic
effects are negligible so that

oO(X, )

£ (2.5)

E(X, 1) = —

where O(X, t) is the electrical potential. We note that the actual electric field E at the point X
is related to & by the formula

& =(1+¢E. (2.6)

In the absence of an external body force, external heat supply and free charge, the balance
equations are of the form

d Xs
5| P dX =T, 0 - T(X,. 0,

g(Xﬁ’ ) —2(X,, 1) =0,

2

d X & 1
a’; fX (Poe + 802__ + 35 Po 1)2) dY = T(Xp. t)l)(Xﬁ, N — T(X,, D(X,, 1) X))

—D(X,, ) DXy, 1) + (X, ) D(X,, 1)

where a superimposed dot denotes the material time derivative, and v(X, f) =u(X, t) is the
velocity. Equations (2.7) hold at all times ¢ and for all X, X, in #. Equation (2.7), is the
one-dimensional form of the law of balance of momentum, equation (2.7), is the one-
dimensional form of Gauss’ law for a charge free body, and equation (2.7); is the one-
dimensional form of the law of balance of energy. There should be no difficulty in verifying
that equations (2.7) are but the one-dimensional forms of the more general equations
recently derived by Tiersten[l]. When comparing equations (2.7) with Tiersten’s equations
it should be noted that the stress T as used here is the sum of the usual mechanical stress and
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the Maxwell stress occurring in Tiersten’s work. In (2.7);, —® & is merely the one-dimen-
sional form of the Poynting flux in a quasi-static electromagnetic field in which electrical
effects predominate. -

We assume that the function (-, -, -) is of class C3; thus, by (2.2), T(, -, *), 2(, -, ),

and 9(', -, *) are of class C2. We define the quantities «, B, 7, 6 and x by the relations
oT oT 09 ) oT 00
:—, =——=——~—, =—=po——,
O o J¢ an d¢ (2.8)
s__ 09 9

e T e

and we note that these quantities are of class C'.

3. GENERAL PROPERTIES OF SHOCK WAVESt
We assume that the motion contains a shock wave moving with intrinsic velocity

dY@®) >0

v =—4;

3.

where Y(t) is the material point at which the wave is to be found at time ¢. Thus, we assume
that u(-, -) and ®(-, -) are continuous functions everywhere; while ¢(-, -), v(-, -), €(-, *)
and 7(-, -) have jump discontinuities across the shock wave they are continuous functions
everywhere else. Hence it follows from (2.1) and (2.3) that e(-, -), T(:, *), 2(-, *), 6(-, ),
and I'(-, -) also have jump discontinuities across the shock wave.

In one-dimension, the kinematical condition of compatibility is

d of
- = U |2 .
FU1-11+ %] (2
where [f] denotes the jump in the function f, ie. [f] =f~ —f* with f* =lim (X, t).
Since U(f) > 0, £~ and f* are respectively, the limiting values of fimmediately behind and
just in front of the shock wave.
Equations (2.7) imply that for all X # Y(¥)

or

aX_pOU’

09D

=0, (3.3)
po I = Tt — 96,

and across the shock wave we have}

1 Recently, Chen and McCarthy {2] examined the behavior of shock waves propagating in elastic di-
electrics within the context of the present theory but neglecting thermodynamic effects.
1 We should always bear in mind that the Second Law requires [5] > 0.
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[ﬂ=—mﬂdEﬂ=mﬁL

[2] =0, E% =0, (3.4)

~pu[r+ 47| =T - (091, poll] = 1T - [26)
0
On putting /(. *) = u(-, -) in (3.2) we find that
[v] = —Ulel (3.5)
and, on combining (3.4) and (3.5),, we obtain the classical result
U? = L7] (3.6)
polel
for the intrinsic velocity of the shock. If we put f(-, -) =v{-, -) and f(-, *) =¢(-, *) con-
secutively in (3.2) and combine the resulting equations with (3.4), and (3.5) we arrive at
another standard relationt

del | dU 2]:38] I[@T}
W el =ax| o l5x)

Once the constitutive laws of the material are known, equation (3.7) enables us to determine
the shock amplitude equation of a shock propagating in that material.

(3.7

Now, since ®(-, -) is a continuous function everywhere,
[® 9] =] 91; (3.8)

aqd on putting f(-, :)=2(-, *) in (3.2) and using (3.4), and (3.4); we conclude that
[ #]=0. Thus, (3.4)5 now becomes

5D
—pOU[I“ + ™ +%vz] =[Tv}, 3.9
0
which, together with (3.4),, (3.5), and (3.6), implies that
poll1+ 2161~ HT* + T )] =0. (3.10)

Equation (3.10) is a generalization of the well known Hugoniot relation to the case of non
heat conducting elastic dielectrics. Qur subsequent work will show that this equation and
equation (3.4), are of importance in the analysis of the basic properties of the shock transi-

tion.
To complete this Section, we note that it follows from (2.2,) (3.4); and (3.4)¢ that

H=0 3.11)

and consequently
[7]=0. (3.12)

t See Chen and Gurtin[3} and Achenbach and Herrmann[4].
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4. THE SHOCK AMPLITUDE EQUATION

In this Section we use equation (3.7) to obtain an equation which governs the amplitude of
a shock wave in a non heat conducting elastic dielectric.
It is clear from the definitions (2.8), that, for all X# Y(f), we have

oT 68 611
X ﬁ ox " Tax @D
Thus equations (3.7) and (4.1) imply that
2t~ 5] £ L
2U +le ] ( 0X Po LOX Po LOX
4.2)

) NG NG
Po \0X Po \0X 0X
Here, and in what follows, we use the notation
[r=fe" 6" n").  fT=fle” &7, n7). 4.3)
Again, the definitions (2.8) and (3.3), imply that, for all X# Y(1),

66" 611

“ox B ax @4

and assuming that x(g, &, n)>0,

0871 P[0 57 [on Blfoet [8]/om\"
loxl - =] ]+ B+ Bl @
Equation (3.4)¢ and the compatibility condition (3.2) with f(-, )==¢(-, *) yield the

relation

de
X

_ dlel

poll1= T~ S - Ut | 2

5 I o
] +[T)E" - c[]t] +U2 [B_X] (4.6)

It follows from (2.2) that

or oe * 9 [os on *
o] =5 [zl o (Gx) -5l oLl + ) - e
Taking the d/dt derivative of the Hugoniot relation (3.10) and combining the result with the
compatibility condition (3.2) with f(-, -) =T(-, +), (4.6) and (4.7), we have

on [T1d[e] [T]de * 1812
Wbﬂ“ﬁﬁ?“zw“mW)‘po
[e] (dT*  dT~ (4.8)
27( dr +T)'
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An elementary calculation, using the definitions (2.8) shows that

dT* dT~ d[e] _d[g’] 5”] N d8+
a +"a‘;-— + B + Uy~ [aX + (o™ +(X)

" v*)( ) 49

In view of equation (3.4), we have

dle] _ di#] 611 d&* dn\*

so that

dig] _ B~ dle] onl 181, Ikl ;.
Tdr ok dt + K™ {ax]*““" ¢

U(’[c’i_]— K"f; [x])(%)+ + U[é] (j;) . @.11)

In deriving (4.11) we have used equation (4.4). Equations (4.8.) (4.9) and (4.11) imply

[_aﬁ]_ H (1-8 @+ 1
0X| G UQRi=1) d&t G UQRt-1)

QH™(1-O—[H]-p"N}e*

+—L _puq ~¢)—[H1}(§—;)+

G 2ct—-1
1 - [61 )
G t=2p
T e aon|¢ TO ey ]}(
k*N N
o 4,
+ G UQRt—-1 (4.12)
where
2
H=a+ '8—, G=y+ li(-s,
K K
: 4.
L='§, N=L" +L* 2&ﬂ (13)
K lel
and

_ pob” _ poU?

T = o E= TRk (4.14)
Differentiating the formula for the intrinsic speed (3.6), we have

du d[T d

20,01 2 = LT _ g2 208, 415)

dt dt dr



Thermodynamic influences on the behavior of one-dimensional shock waves in elastic dielectrics 1235
which, together with (2.8) and (4.12), yields

dU_ tH (1-8) die]

dt ~ poUQr—1Dle] dt

1

8‘l-
T el @i—1)

{{H‘(l—é)+(r—1)[H]—%ﬁ+N—(t—%)ﬂ+[L] =
a +
+ {H"(l — Ot 1)[H]}(a—;) @16

+ {%(G_ +GH+(r—-HI[G] - E_{%;(;—;)J,

<+
+ {%K+N+(r—%)x+[L]}%}.
Finally, substituting (4.4), (4.5), (4.12) and (4.16) into (4.2), we have:

Theorem 1

The amplitude of a shock wave propagating in an elastic dielectric material which does not
conduct heat satisfies the equation

dle] _ U0-8@i=1) (, [
F‘(3é+1)r—(3«:—1){ﬂc [ax]}’ @101
where
1 - 4+ + f’.‘i
1c=—m{{3ﬂ 1=+ -2[H] - 3" N-(=-1B"[L] T
a +
+ {3H—(1 — &) +3(c— 1)[H]}(5)%) w1s)

+ 3{(r—%)[G]+%(G+ +G7) = po %}(:_;)

£5+
+ {%K+N+(r - %)K+[L]} —I-J—}
Clearly, equation (4.17) is extremely complicated and we can only hope to deduce useful
information from it by adopting additional assumptions concerning the properties of the
material and the nature of the shock wave under examination. We return to the study of
equation (4.17) in the following section.

1 Even though (4.17) is of the same form as those arising from numerous other theories (see Chen and
Gurtin[5-7], and Chen[8]), a cursory examination reveals that the similarity is superficial.
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5. PROPERTIES OF SHOCK TRANSITION
In view of our assumption that (e, &, 1) > 0, it follows from (2.1); that there exists a

function &(-. -. -) such that
& =&, D, 1). (5.1)

We define the functions T'(-, -, ), T(-, -, -), and (-, -, -) as follows

I If(g, 9, VI)=F(3~ g(ss ‘9’ ”)! ’7),
T="T(e, 2, n) =T(e, &(e, 2, n). n), (5.2)
0=0(e. 2, n)=0(c,&(e, 2, n), n).

It follows from (3.3),, (4.4) and (5.1) that

jn3)

& B of 1 o0& 6
%k @k wmx -3
and, on using (2.8). (4.13), (5.2) and (5.3), we find that
oT_of otek_  p_ .
% detoga “tHTT
- .~ (5.4)
oT 6T+ oT 06 N ps G
on on tecan Tk
We assume that
H(e. 2.m)>0 and G(g, 2, n)#0. (5.5)

It follows from (5.2), and (5.5), that we can write
n=T""e 2,n). (5.6)

At a given instant the values of ¢*, &%, and 7™ just ahead of the shock wave are fixed, and
in view of (2.1); and (3.4); so is the value of 9. It follows that the thermodynamic state
immediately behind the shock wave is determined once ¢~ and T~ are known. Of course,
¢~ and T~ cannot be arbitrary for they must satisfy the relation (3.10) which we now write
in the form

pol (6™, 2. T (™. 2, T N=pole*. 2. T (%, 2. T"))

+ 9286, 2. T e . 2. T N-28", 2. T (", 2, TH)-HT +T )] =0. (5.7)
As is usual in shock wave studies, we assume that in the (¢7, T7) plane the relation (5.7)
can be represented by a curve T~ =Ty(e™). The function Ty also depends one*, n*, and @
or alternatively, on ¢*, n*, and 7.

The foregoing assumption enables us to prove that if in addition to (5.5); we assume that

*T(e, 2,
(66 2 r’) < 0’ fOl" all (8’ 9’ V]), £< 0, (58)
€
then

(i) the wave is a compressive shock, i.e. [¢] <0,
(ii) the intrinsic speed of the shock is supersonic with respect to the material ahead of
the shock and subsonic with respect to the material behind it, i.e.

H* <po,U?<H", (5.9)
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(iii) the entropy n~ immediately behind the shock increases with decreasing &~.
If instead of (5.8) we assume that

0*T(e, 2,n)

pye >0, forall (s, 2,1),e2>0, (5.10)

then (ii) of the previous paragraph still holds, but instead of (i) and (iii) we have
(i*) the wave is an expansion shock, i.e. [¢] > 0,

(iii*) the entropy n~ immediately behind the shock increases with increasing &~ .

The derivation of the foregoing results follows closely the classical arguments given for
elastic fluids.t Since the proof of these results is straightforward, but involves rather lengthy
algebra we omit the details. Of course, results of this type have been given in a number of
earlier studies.

Now (5.1), (5.6) and our assumptions concerning the Hugoniot relation (5.7) imply that
there exist functions &x(-, -, -, *) and nyx(-, -, -, ) such that

[g] = gH([E]’ 8+7 éa+5 ’1+)9
1] = nu(lel, e*, 6%, n*).
While we do not know the explicit forms of the functions defined by (5.11) we can determine

their derivatives. Indeed, taking the d/dt derivative of (5.11), and using (3.2) with f(-, ) =
n(, *), (3.12), (4.4) and (4.12), we have

oy H (1-9)

el G Q-1
%_{ [H] BTN }fhm

(5.11)

&t " TH (-8 HU-9Al
. (5.12)
g _ KN
0T G (2t—1)
ar]H 1 : - + [9] + }arlH
i —2p. — — 2.
ot ~H A=\ T T T N
Likewise, differentiation of (5.11), yields
06 0 Onu B~
el k de]l k-
0y _O0" [, _IHI BN ;@'T_HJ_IEI
det k™ H (-8 H(A-09lde «’
~ (5.13)
06y 6 k'N ]
&Y kG Q-1

u_ 0 ety O VO JO] [T
an+‘x-H—(1—¢){G TG -2y 5N}a[sl+[x] d [x]

+ See Weyl[9].

1JSS Vol. 10 No. L11—E
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Henceforth, let us consider a compression shock propagating in a body which is initially
in compression, i.e.f

[e] <0, &"<O. (5.14)
In view of our preceding results we see that £, defined by (4.14),, must satisfy the inequality
0<é<, (5.15)
and that
H 1-9
_— 5.
G (2t—1) (5.16)

Thus, by (5.5), (5.15) and (5.16), we see that 1, defined by (4.14),, obeys the relations

G <0<«1>1, (5.17

G >0<1<0. A7)
With the results (5.15) and (5.17) we may now state the implications of the shock amplitude
equation (4.17) on the behavior of the compression shock, defined by (5.14). Indeed, we have
the following:

3¢ -1
Q) IfG- <0,0rifG" >0andt < %_*_—1 then at any instant

2 d|[e]]
[5}] <,10©——dt <0,

[%] > Acadlcﬁ:” > 0.

3¢ -1
(i) If G- >0and t > 3%, then at any instant

K3 d|[eli
x| < ACQ—E— >0,

@], ditd]
B4

< 0.
i dt

(iii) Whenever G~ <0 or G~ > 0, we have at any instant
K2 d
6 Ili]l o,

=,1¢>

ox| 7 d

In view of the preceding results we call 1., defined by (4.18), the critical jump in strain
gradient. It is a generalization to thermoelastic dielectrics of those which arise in a number of
other theories.

T Results corresponding to those presented in the remainder of this section and Section 6 can be readily
established for an expansion shock.
1 See Chen and Gurtin[5-7], and Cheni8].
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Now, let us record certain special cases of A, which are of interest. First, if the region
ahead of the shock is steady, then by (2.2),, (2.8), (3.3) and (4.4) it can be shown that 4,

reduces to
3 8" HY)\/de\*
l"z—(21—1)(1—é){T_é_pOG“‘[e]F;(a) ’ ©-18)

On the other hand, if the region ahead of the shock is not only steady but also uniform,
then A, vanishes. In which case, we have
) _ H (1~ 9) dld]
dt G (2t—1) dt’
diél _ {M 4 ﬁ;} diel
dt k"G (2t —1) k™

(5.19)
dt

6. PROPERTIES OF TEMPERATURE AND ELECTRIC FIELD
DURING SHOCK TRANSITION

We deflne the specific heat by the relation

(e, &, :1)) -1

c = 6(6, éa, 17) = 9(8, éﬂa ,1)( ar,

(6.1)

and assume that
te, &,n)>0. (6.2)

By (2.1), and (5.6) we have

[6] = 8" +[e]. & + Enlel, ¥, 6%, ") n* +np(lel, 6%, 67, 0™)) — O™, 6%, 1™).

6.3)
Differentiating (6.3) with respect to [¢] and using (2.8), (5.12),, (5.13), and (6.1), we find that
o] G- 6~ (67)*\ony
6_[8—]. =E (C__ POK_)‘?_[E].

In view of our earlier assumptions the coefficient of dny/d[e] in (6.4) is positive.
Consider a compressive shock wave ([¢] < 0) which is propagating into a region which is in
a state of compression (¢* < 0). Thus, by (5.12),, (5.16) and (6.4), we have the following:
(i) If G~ <0, then

(6.4)

a1 _ o 6.5
30l . .5)
(ii) If G~ > 0, then
a[6] - 0~  (07)*\ (e, e*, &%, n™)
5[—5 < 0 whenever G~ < — (po = + pe ) A 2L (6.6)
or
o[o] - 0~  (0)*\onuel, ™, &%, n")
26l > 0 whenever G~ > — (po = + — ) 30l . 6.7)
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Further, in view of (5.12),, (5.13); and (5.16), we have the following:
(i*) If = <0and 6~ > 0, then

o[&]
éﬁ <0. (6.8)
(ii*) If =~ <0 and 6~ <0, then
d[&] - ~Ong(lel, ¥, 67 n™)
m < 0 whenever 8~ < — & 3] > (6.9)
or
a[éa] - - a”’H([sla 8+’ (9@+’ ’7+)
m > 0 whenever §~ > — 4 o . (6.10)
(iii*) If f~ >0 and 6~ <0, then
a[&]
(iv¥) If B~ > 0 and 6~ > 0, then
6[(5”] - - 6"}1([8]» 8+9 g+* 'I+)
Fol < 0 whenever §~ < —9¢ 1] ) (6.12)
or
% > 0 whenever = > —§~ 6'7”([8]’;[;’]6”’ '1+). (6.13)

Equations (6.5)—(6.13) give the conditions when the temperature and electric field increases
or decreases across the shock. In view of (6.5) we see that for most materials the temperature
behind the shock increases monotonically with decreasing ¢ . On the other hand, the general
behavior of the electric field across the shock is uncertain.

7. INFINITESIMAL SHOCK WAVES

Here we determine some of the properties of the shock in the limit as ¢~ — &*; that is, we
consider the case of a shock of infinitesimal amplitude (|[¢]| < 1). In particular, we derive
approximate expressions for [£], [T], [0], [e] and U for such a shock. Henceforth, we assume
that (-, -, -) is of class C*.

To begin with, we have the following identities:

H 2 3
H*=%=a*+3ﬁ—2ﬂ*—ﬂ—3k*+3gﬁ7,
£ K K K
oH B B?
R S Yo SR .
H o0& B+ h‘ﬂ K2 (7.1)
K B

2 z 2
SEL IR R TP
£ Po K K K K K
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where
. o°T . T . 029 g 2T
*=zz P =8 T %oe
520 0%0 520 (7.2)
7* = po 5*=Poa_é72’ 1t =po+—

8¢’ dc 0&°

Employing a standard argument, it follows from (5.7), (2.8) and (7.1), that

[ =2H5[eD® + o([e]®), (7.3)
where H§ = H*|[=0. Now
08y 6y 2 2
[6] = e |- 0[6] + %6_[51_2 m=0[8] + o([e]). (1.4)
By (5.13),, (7.1), and (7.3), we have
aé’,, E
6[3] [£1=0 K’ (1.5)
5[8]2 [s]=0_ Kt
Thus, we have
1=+ 2 e o) @.6)

Similar arguments may be used to show that

[T] = H" [e] + 1H3[e]® + o([el®),

0] =— G+[8] +4G3Le® + o([e]?),
Po

(1.7)
1= T+ 5 (1 =52 () ) + o
Ut = U3 + 258 1 4 ofte,
2po
where
H+
U3 =T = + Bk oo, (8)

These results should prove to be quite useful in practice when the amplitude of the shock is
small.
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AbcTpakT — B paboTe uccienyeTcs nopedeHHe OOQHOMEPHBIX yIAPHBIX BOJH, PaclpOCTpaHA-
FOLMXCS B yIIPYTHX OU3IeKTpuKkax. [IpuHuMaeTcs BO BHUMaHHE HAJIHYKE TEPMOAMHAMHYECKUX
3¢pekTOB, HO ITpeHedperaeTcs BOSMOXHOCTD TeruionpoBoaHocTH. [loce BriBo3a auddepen-
UHABHOIO YpaBHEHHA, KOTOPOMY aMIUIMTYAa yhapa AOJDKHA YAOBJIETBOPATb, HCCIIENYETCA
CBOHCTBA nepexona yaapa. B 0cO6EHHOCTH, HAXOOUTCA, YTO K/IACCHYECKHE PE3YJIbTATHI Iepe-
XO[a yaapa MOXHO OGOOIIMTL IU1f HAcTOSILUEH CHTyauMH. OTH pe3ynbTaThl, IO OYEpenH,
pa3pellaoT BhIMHTATH IIPHYACTHOCTb YpaBHEHHS aMIUTMTYAbI YAapa Ha TOBeJeHHE yIapa.
HaxoOuTcs 4TO KPUTEPHS POCTa HJIM 3aTYXAaHHS yAapa 3aBHCHT OT OTHOCHTENBHBIX BEJTHYHH
cKauka B rpajguenTe nedopMaldy H A., HA3BAHHOTO KPUTHMYECKMM CKAYKOM B IPaIMEHTE
nepopmanuu. ITo, oueBHOHO, oxuaaeTcd. OOCyKIarOTCH, TaKXKe, CBOWCTBa MOJISA TeMnepa-
TYpbl M SIEKTPHIECKOTO 110718 BO BPEMS Ilepexoa yaapa. OnpenensiroTcs YacTHbIE pe3yIbTaThl,
BaXHBI IUIA CJTyyas MHOUHHUTE3UMAJILHOM aMILTHTY bl yaapa.



